1 /* 2 * copyright (c) 2005-2012 Michael Niedermayer <michaelni@gmx.at> 3 * 4 * This file is part of FFmpeg. 5 * 6 * FFmpeg is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * FFmpeg is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with FFmpeg; if not, write to the Free Software 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 19 */ 20 21 /** 22 * @file 23 * @addtogroup lavu_math 24 * Mathematical utilities for working with timestamp and time base. 25 */ 26 module ffmpeg.libavutil.mathematics; 27 28 import ffmpeg.libavutil; 29 30 extern (C) @nogc nothrow: 31 32 enum M_E = 2.7182818284590452354; /* e */ 33 34 enum M_LN2 = 0.69314718055994530942; /* log_e 2 */ 35 36 enum M_LN10 = 2.30258509299404568402; /* log_e 10 */ 37 38 enum M_LOG2_10 = 3.32192809488736234787; /* log_2 10 */ 39 40 enum M_PHI = 1.61803398874989484820; /* phi / golden ratio */ 41 42 enum M_PI = 3.14159265358979323846; /* pi */ 43 44 enum M_PI_2 = 1.57079632679489661923; /* pi/2 */ 45 46 enum M_SQRT1_2 = 0.70710678118654752440; /* 1/sqrt(2) */ 47 48 enum M_SQRT2 = 1.41421356237309504880; /* sqrt(2) */ 49 50 /** 51 * @addtogroup lavu_math 52 * 53 * @{ 54 */ 55 56 /** 57 * Rounding methods. 58 */ 59 enum AVRounding 60 { 61 AV_ROUND_ZERO = 0, ///< Round toward zero. 62 AV_ROUND_INF = 1, ///< Round away from zero. 63 AV_ROUND_DOWN = 2, ///< Round toward -infinity. 64 AV_ROUND_UP = 3, ///< Round toward +infinity. 65 AV_ROUND_NEAR_INF = 5, ///< Round to nearest and halfway cases away from zero. 66 /** 67 * Flag telling rescaling functions to pass `INT64_MIN`/`MAX` through 68 * unchanged, avoiding special cases for #AV_NOPTS_VALUE. 69 * 70 * Unlike other values of the enumeration AVRounding, this value is a 71 * bitmask that must be used in conjunction with another value of the 72 * enumeration through a bitwise OR, in order to set behavior for normal 73 * cases. 74 * 75 * @code{.c} 76 * av_rescale_rnd(3, 1, 2, AV_ROUND_UP | AV_ROUND_PASS_MINMAX); 77 * // Rescaling 3: 78 * // Calculating 3 * 1 / 2 79 * // 3 / 2 is rounded up to 2 80 * // => 2 81 * 82 * av_rescale_rnd(AV_NOPTS_VALUE, 1, 2, AV_ROUND_UP | AV_ROUND_PASS_MINMAX); 83 * // Rescaling AV_NOPTS_VALUE: 84 * // AV_NOPTS_VALUE == INT64_MIN 85 * // AV_NOPTS_VALUE is passed through 86 * // => AV_NOPTS_VALUE 87 * @endcode 88 */ 89 AV_ROUND_PASS_MINMAX = 8192 90 } 91 92 /** 93 * Compute the greatest common divisor of two integer operands. 94 * 95 * @param a,b Operands 96 * @return GCD of a and b up to sign; if a >= 0 and b >= 0, return value is >= 0; 97 * if a == 0 and b == 0, returns 0. 98 */ 99 long av_gcd (long a, long b); 100 101 /** 102 * Rescale a 64-bit integer with rounding to nearest. 103 * 104 * The operation is mathematically equivalent to `a * b / c`, but writing that 105 * directly can overflow. 106 * 107 * This function is equivalent to av_rescale_rnd() with #AV_ROUND_NEAR_INF. 108 * 109 * @see av_rescale_rnd(), av_rescale_q(), av_rescale_q_rnd() 110 */ 111 long av_rescale (long a, long b, long c); 112 113 /** 114 * Rescale a 64-bit integer with specified rounding. 115 * 116 * The operation is mathematically equivalent to `a * b / c`, but writing that 117 * directly can overflow, and does not support different rounding methods. 118 * If the result is not representable then INT64_MIN is returned. 119 * 120 * @see av_rescale(), av_rescale_q(), av_rescale_q_rnd() 121 */ 122 long av_rescale_rnd (long a, long b, long c, AVRounding rnd); 123 124 /** 125 * Rescale a 64-bit integer by 2 rational numbers. 126 * 127 * The operation is mathematically equivalent to `a * bq / cq`. 128 * 129 * This function is equivalent to av_rescale_q_rnd() with #AV_ROUND_NEAR_INF. 130 * 131 * @see av_rescale(), av_rescale_rnd(), av_rescale_q_rnd() 132 */ 133 long av_rescale_q (long a, AVRational bq, AVRational cq); 134 135 /** 136 * Rescale a 64-bit integer by 2 rational numbers with specified rounding. 137 * 138 * The operation is mathematically equivalent to `a * bq / cq`. 139 * 140 * @see av_rescale(), av_rescale_rnd(), av_rescale_q() 141 */ 142 long av_rescale_q_rnd (long a, AVRational bq, AVRational cq, AVRounding rnd); 143 144 /** 145 * Compare two timestamps each in its own time base. 146 * 147 * @return One of the following values: 148 * - -1 if `ts_a` is before `ts_b` 149 * - 1 if `ts_a` is after `ts_b` 150 * - 0 if they represent the same position 151 * 152 * @warning 153 * The result of the function is undefined if one of the timestamps is outside 154 * the `int64_t` range when represented in the other's timebase. 155 */ 156 int av_compare_ts (long ts_a, AVRational tb_a, long ts_b, AVRational tb_b); 157 158 /** 159 * Compare the remainders of two integer operands divided by a common divisor. 160 * 161 * In other words, compare the least significant `log2(mod)` bits of integers 162 * `a` and `b`. 163 * 164 * @code{.c} 165 * av_compare_mod(0x11, 0x02, 0x10) < 0 // since 0x11 % 0x10 (0x1) < 0x02 % 0x10 (0x2) 166 * av_compare_mod(0x11, 0x02, 0x20) > 0 // since 0x11 % 0x20 (0x11) > 0x02 % 0x20 (0x02) 167 * @endcode 168 * 169 * @param a,b Operands 170 * @param mod Divisor; must be a power of 2 171 * @return 172 * - a negative value if `a % mod < b % mod` 173 * - a positive value if `a % mod > b % mod` 174 * - zero if `a % mod == b % mod` 175 */ 176 long av_compare_mod (ulong a, ulong b, ulong mod); 177 178 /** 179 * Rescale a timestamp while preserving known durations. 180 * 181 * This function is designed to be called per audio packet to scale the input 182 * timestamp to a different time base. Compared to a simple av_rescale_q() 183 * call, this function is robust against possible inconsistent frame durations. 184 * 185 * The `last` parameter is a state variable that must be preserved for all 186 * subsequent calls for the same stream. For the first call, `*last` should be 187 * initialized to #AV_NOPTS_VALUE. 188 * 189 * @param[in] in_tb Input time base 190 * @param[in] in_ts Input timestamp 191 * @param[in] fs_tb Duration time base; typically this is finer-grained 192 * (greater) than `in_tb` and `out_tb` 193 * @param[in] duration Duration till the next call to this function (i.e. 194 * duration of the current packet/frame) 195 * @param[in,out] last Pointer to a timestamp expressed in terms of 196 * `fs_tb`, acting as a state variable 197 * @param[in] out_tb Output timebase 198 * @return Timestamp expressed in terms of `out_tb` 199 * 200 * @note In the context of this function, "duration" is in term of samples, not 201 * seconds. 202 */ 203 long av_rescale_delta (AVRational in_tb, long in_ts, AVRational fs_tb, int duration, long* last, AVRational out_tb); 204 205 /** 206 * Add a value to a timestamp. 207 * 208 * This function guarantees that when the same value is repeatly added that 209 * no accumulation of rounding errors occurs. 210 * 211 * @param[in] ts Input timestamp 212 * @param[in] ts_tb Input timestamp time base 213 * @param[in] inc Value to be added 214 * @param[in] inc_tb Time base of `inc` 215 */ 216 long av_add_stable (AVRational ts_tb, long ts, AVRational inc_tb, long inc); 217 218 /** 219 * @} 220 */ 221 222 /* AVUTIL_MATHEMATICS_H */